Telomere-Driven Karyotypic Complexity Concurs with p16 Inactivation in TP53-Competent Immortal Endothelial Cells
نویسندگان
چکیده
Critically short telomeres promote chromosomal fusions, which in TP53-defective cells initiate the formation of cytogenetic aberrations that are typical of human cancer cells. Expression of the enzyme telomerase stabilizes normal and aberrant chromosomes by maintaining telomere length. However, previous investigations, including our own, have shown that overexpression of telomerase reverse transcriptase (hTERT) does not prevent net telomere shortening in human endothelial cells. In the present study, two mass cultures of hTERT-transduced bone marrow endothelial cells (BMhTERT) and 26 clones were employed to further investigate the immortalization process and consequences of telomere shortening. Eighty-five percent (22 of 26) of the clones and both mass cultures were immortalized. However, cytogenetic analyses revealed recurring cytogenetic aberrations in the mass cultures and 12 representative clones. Several of the recurring aberrations, including +5p, +11, 13, +19, and +20, and nonreciprocal translocations involving 17p and 2p were previously implicated in human carcinogenesis. One mass culture and a subset of clones (5 of 12) had complex karyotypes, characterized by cytogenetic heterogeneity and at least five chromosomal abnormalities. p16 was silenced exclusively in the five clones and mass culture with complex karyotypes, whereas the p53/p21 pathway was defective in only one clone. Telomere dysfunction was implicated in the evolution of complex karyotypes by the presence of anaphase bridges, telomere associations, and dicentric chromosomes. These results show that complex karyotypes can evolve in TP53-competent cells and provide evidence that p16 functions as a gatekeeper to prevent telomere-driven cytogenetic evolution. These investigations provide new insight to the role of p16 as a tumor suppressor. (Cancer Res 2006; 66(22): 10691-700)
منابع مشابه
Telomere-driven karyotypic complexity concurs with p16INK4a inactivation in TP53-competent immortal endothelial cells.
Critically short telomeres promote chromosomal fusions, which in TP53-defective cells initiate the formation of cytogenetic aberrations that are typical of human cancer cells. Expression of the enzyme telomerase stabilizes normal and aberrant chromosomes by maintaining telomere length. However, previous investigations, including our own, have shown that overexpression of telomerase reverse tran...
متن کاملDo tumor-suppressive mechanisms contribute to organism aging by inducing stem cell senescence?
Stem/progenitor cells ensure tissue and organism homeostasis and might represent a frequent target of transformation. Although these cells are potentially immortal, their life span is restrained by signaling pathways (p19-p53; p16-Rb) that are activated by DNA damage (telomere dysfunction, environmental stresses) and lead to senescence or apoptosis. Execution of these checkpoint programs might ...
متن کاملMechanisms of human epithelial cell immortalization and p16NK4a induced telomere-independent sencescence
As human epithelial cells age in culture, protein levels of the tumor suppressor protein p16 continue to increase resulting in growth arrest independent of telomere length. Telomere-independent senescence induced by the p16/Rb tumor suppressor pathway prevents many epithelial cells from becoming immortalized by telomerase alone. Differences in culture conditions have been hypothesized to modula...
متن کاملHuman keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics.
Normal human cells exhibit a limited replicative life span in culture, eventually arresting growth by a process termed senescence. Progressive telomere shortening appears to trigger senescence in normal human fibroblasts and retinal pigment epithelial cells, as ectopic expression of the telomerase catalytic subunit, hTERT, immortalizes these cell types directly. Telomerase expression alone is i...
متن کاملMalignancy without immortality? Cellular immortalization as a possible late event in melanoma progression
Cell senescence is a permanent growth arrest following extended proliferation. Cultured cancer cells including metastatic melanoma cells often appear immortal (proliferate indefinitely), while uncultured benign nevi (moles) show senescence markers. Here, with new explantation methods, we investigated which classes of primary pigmented lesions are typically immortal. Nevi yielded a few prolifera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006